
????-??
March 8, 2007

The Connection Between Hits and Geometry

Rob Kutschke, Fermilab CD

Abstract

This note presents a sketch of how one might connect tracking hit

information with its associated geometry information, where “tracking”

includes both pixels and strips. The note is intended to as a way point

on the discussion we started a few weeks ago and will include: a sketch

of how hit information flows, in experimental data, from the detector to

its incorporation into tracks; the corresponding path for hits from Monte

Carlo events; and a discussion of matching Monte Carlo reconstructed

tracks with generated tracks.

Contents

1 Introduction 1

2 Local and Global Coordinate Systems 2

3 Data Flow for Experimental Data I 3

3.1 Packed Binary Data . 3
3.2 Unpacked Raw Data . 3
3.3 Connecting the Hits to the Geometry 5

A Information Needed in SensorGeom 6

1 Introduction

For track finding and fitting, the main geometrical unit is the sensor. On pages
8 and 9 of the report we presented at Beijing, I count 8228 sensors in the barrel
silicon strip tracker. As a rough guess I will multiply this by 3 to include sensors
in the forward tracker plus the sensors in the pixel system. In round numbers
we have of order 25,000 sensors in the entire system.

In the following examples I will show some code fragments. For now they
are written in “mock C++”, which hopefully is clear enough for this point in
the discussion. Also, I have paid no attention to the uses of inheritance and
polymorphism; I think we need first to decide what we want and then to decide
where inheritance and polymorphism improve the design.

1

Given a hit, we need fast, easy access to the geometry information. I propose
that the way to do this is:

1. To assign each wafer a unique Id.

2. For the geometry system to support a function that returns sensor geom-
etry information given the sensor Id.

The corresponding code fragment is,

class SensorId;

class SensorGeom;

SensorGeom& getSensorGeom(SensorId);

where SensorGeom is the information we need and where the function
getSensorGeom lives within the appropriate scope within the geometry system.
An illustration of the information that must be provided by SensorGeom is in
Appendix A.

My guess is that SensorId will just be a dense integer, so that one can use
it as an index into indirection arrays. But for now it’s just a class.

I have tried to choose class names that do not match any of the existing
org.lcsim or SLIC classes. The intention is to give us nomenclature to separately
discuss the classes we need and the classes we have. Later we can discuss how
to morph the classes we have into those that we need.

2 Local and Global Coordinate Systems

In his recent talk, Rich defined the (u, v, w) notation to describe local coordi-
nates on a particular sensor. In this note (x, y, z) are always global coordinates
and (u, v, w) are always local coordinates. As a reminder, for a strip sensor, the
local coordinates are define by one vector and three unit vectors,

~r0 vector to the local origin on the sensor.
û in the plane of the sensor, along the measurement direction.
ŵ normal to the plane.
v̂ ŵ × û, in the plane of the sensor, along the strip direction.

These vectors are expressed in global coorinates; that is, ~r0 is the location, in
global coordinates, of the local origin of a sensor, and û is the measurement
direction on some sensor plane, expressed in global coordinates. Note that, for
an ideally aligned barrel strip sensor, v̂ is along ±ẑ and, for an ideally aligned
forward sensor, ŵ is along ±ẑ.

For a pixel sensor, û and v̂ are the two orthogonal measurement directions
in the plane.

2

3 Data Flow for Experimental Data I

This section discusses data flow from the detector to the tracking algorithms.
It will illustrate how the geometry information can be connected to the hits in
a way that I think is economical of both memory and CPU time. For simplicity
I will only consider barrel strip detectors but I will presume that we want to
consider some barrel layers which have two sensor layers, the second containing
some sort of stereo information. The data flow is illustrated in Figure 1 and the
corresponding classes are discussed below.

3.1 Packed Binary Data

The rawest form of data is packed binary data straight from the event builder.
As far as this note is concerned, it is just a blob that can be unpacked. We do
not need to know the internal structure. This is represented by the top box in
Figure 1.

3.2 Unpacked Raw Data

The first step in processing the data is to unpack it in order to provide structured
access to the information. This process should be lossless and it should report
errors when it encounters inconsistent data. This produces the second box
from the top in Figure 1. This box holds a single container of objects called
UnpackedSensorInfo, each of which represents a single hit strip:

class ElectronicAddress{

// Not specified in detail.

// It contains a chip Id, a channel number within the chip ...

};

class TimeStamp{

// Not defined in detail.

};

class UnpackedSensorInfo{

public:

// Data members

ElectronicAddress add;

short int iadc;

TimeStamp t;

};

By design these classes are independent of the geometry and calibration systems.
They are simply a structured representation of the data at the previous level.

I am not sure that we need a timestamp but I have included one for com-
pleteness.

3

optimized for various reco algorithms
Various derived Data Products

Geometry Info:
Local origin (3 vector in global coord)
Unit normals (u,v,w) (3 vector in global coord)
Length and width of sensor

Packed binary data from DAQ/Event Builder

Container<UnpackedSensorInfo> SInfo;

Structured copy of the previous box. No geom info.

SensorStripHits& getStripsHits(SensorId);

Access to a container of hits on a specified sensor:

Strip Clustering Algorigthm

Access to a container of clusters on a specified sensor:

SensorStripClusters& getStripClusters(SensorId);

Access to crossed strips:

Still working on this:

Cuts: Low ADC, hot/dead channels, ...

1:1 ie no loss of information

Figure 1: The main objects on the path of barrel silicon strip data as it starts
at the detector and is processed into tracks.

4

Each UnpackedSensorInfo object is realy just a struct whose data is com-
plete at instantiation and never changes until the object is destructed. These
objects should be treated as such; that is their only methods are their construc-
tors and destructors. We can debate another day if we should make the data
private and provide accessor functions.

3.3 Connecting the Hits to the Geometry

The next box in in Figure 1 contains the first objects in which the hit information
is connected to the geometry and the conditions data. This box holds many
containers of hit strips, one container per sensor. The object representing a
single hit strip is,

typedef int StripNumber;

class StripHit{

public:

StripNumber iu;

short int iadc;

double adc;

TimeStamp t;

};

These objects are collected into containers, one per sensor,

class SensorStripHits{

public:

SensorId sid;

SensorGeom& sgeom;

Container<StripHit> hit;

};

where I have used “Container” as a placeholder for your favorite container type.
The object that holds all of the hits for all of the sensors will look something
like,

map<SensorId,SensorStripHits> SSHits;

Here I have specified the container as a map for conceptual purposes. But
if the SensorId is just a dense integer, this can be implemented an array of
SensorStripHits:

Container<SensorStripHits> SSHits[SensorId];

Whatever the case, the system can hide the implementation details if it has
the following two methods for access to the hits on a given sensor:

bool hasStripHits(SensorId);

SensorStripHits& getStripHits(SensorId);

Some additional comments on this design,

5

1. The class SensorStripHits contains a reference to the geometry of the
sensor. This is the main point of this document: it is how we can connect
the geometry to the hits with no copies of the geometry and the fewest
reference objects.

2. This reference is computed only once per sensor per event.

3. The class SensorStripHits contains a copy of the SensorId. This is might
be redundant but it also might be useful for debugging.

The transformation from the previous box, in its full complexity, is a heavy-
weight step:

1. It needs access to the full conditions data base to access pedestals and
gains for the ADCs, to access the list of hot/dead channels, and to access
the map from electronic addresses to sensor/strip.

2. It is allowed to discard data. One might discard data because the ADC is
below threshold, because the strip is on a list of known hot/dead channels
or because the hit is out of time.

3. There no links from this container back to precursor containers: the only
repeated data is iadc, which is lighter weight than a back link.

A Information Needed in SensorGeom

The following class illustrates the information needed from the geometry system
for each sensor.

class SensorGeom{

public:

SensorID id;

SubSystem type; // See below. Might not be needed?

double r[3]; // \hat{r}_0.

double u[3], v[3], w[3]; // unit vectors along the u,v,w axes.

double dim[3]; // Dimensions along the u,v,w axes.

double pitch[2]; // Pitch along the u and v axes.

// Do we need?

????? // A reference back to full geom info?

};

where SubSystem is a bookkeeping convenience defined by,

enum SubSystem { BarrelPixel, ForwardPixel,

BarrelStrip, ForwardStrip};

int nSubSystems(ForwardStrip+1);

6

If the equivalent information is already directly, and quickly, available, from
the existing geometry system, we do not need this class and our code can talk
directly to the existing geometry system.

It is redudant to carry the SensorId around in the object but I find it a
powerful debugging convenience.

I have not defined any methods for this class since it is essentially a con-
venience class for accessing a subset of the information on each sensor. If
someone wants the full power of the geometry system, they can follow the
pointer/reference back to the geometry system and access its methods directly.

To complete the geometry specification we need to define a few conventions,
such as: Conventions we need to define to complete this:

• Where is the local orign: at the center of the “top” surface, at the body
center, at a corner, at an edge?

• Are dimension full lengths or half lengths?

• Is ŵ an inward normal or outward normal or someother convention.

• For pixels, which is u and which is v?

• Do we want to define now the methods one would need to deal with non-
flat wafers?

7

